Day2-P16

Comprehensive Evaluation of Multiple Automated High Throughput Extraction Platforms Using Quantitative Real Time PCR Assays

Vikas Singh¹, Nicholas Lampe¹, Elijah Ybarra¹, Sharon Manley¹, Hikmat Al-Hashimi¹, Manisha Diaz¹, Mark Wissel¹

¹Eurofins Viracor BioPharma, Lenexa, Kansas, USA

Contact information: manisha.diaz@vbp.eurofinsus.com

ABSTRACT

Background. Detection of nucleic acid by quantitative polymerase chain reaction (qPCR) and / or quantitative reverse transcriptase PCR (qRT-PCR) continues to be the gold standard in supporting biodistribution, vector shedding, gene expression, and pharmacokinetics bioanalysis studies. These molecular platforms are highly preferred due to their inherent sensitive and robust nature. Furthermore, qPCR and RT-qPCR assays continue to play a central role in clinical diagnostics wherein, clinicians heavily rely on these assays to diagnose (assess levels of viral and bacterial pathogens) and effectively treat patients. Analysis of viral nucleic acid in biological matrices requires efficient extraction of viral nucleic acids. Selection of an appropriate extraction platform is key to the successful method development / validation / testing of any qPCR / RTqPCR assay. Selections are highly dependent on unique properties of biological matrices. Importantly, introducing automated extraction platforms into a laboratory's workflow increases the efficiency and consistency of the test results. Automated magnetic and silica-based extraction technologies are commonly used in clinical diagnostics and bioanalysis laboratories. In this study, we describe the evaluation of 24 well NucliSENS[®]easyMag[®] (BioMerieux; magnetic bead based), 96 well KingFisher[™] Flex (Thermo Fisher Scientific; magnetic bead based), 12 well QIAcube Connect (Qiagen; silica based), and 96 well QIAcube HT (Qiagen; silica based) using serum, neat urine, plasma, and peripheral blood mononuclear cells (PBMCs). Viracor evaluated QIAcube Connect HT and KingFisher Flex as alternatives to mid / lower throughput extraction platforms.

NucliSENS[®] easyMAG[®]

QIAcube Connect

QIAcube Connect HT KingFisher[™] Flex

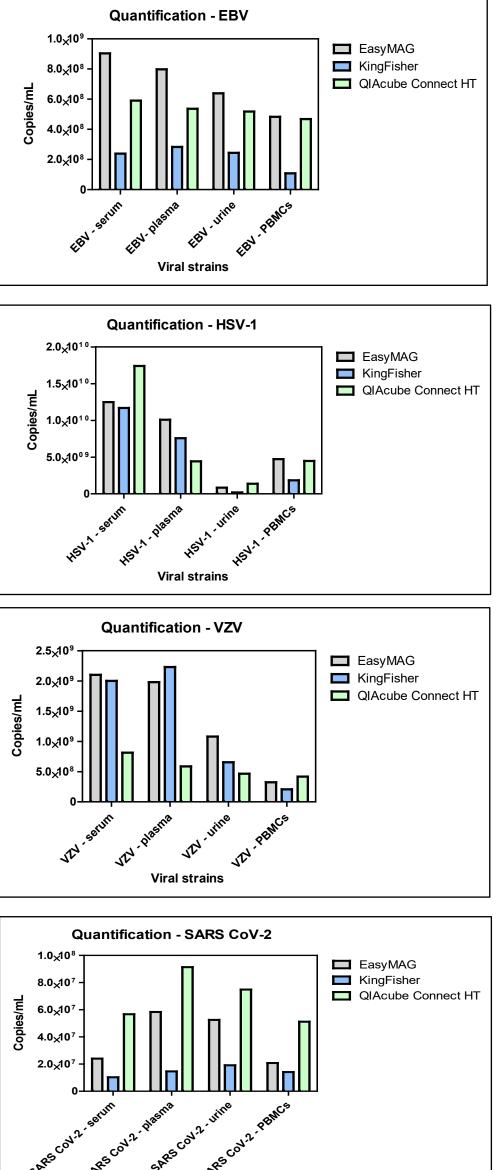
	Feature		Kingfisher Fle	X		QIAcube Connect HT		
E>	traction Method		Magnetic beac	ls.		Silica-membrane spin columns.		
Sar	nple compatibility	50 – 3	1,000 µL: 96 deep	-well plate		200 μL - 5 mL		
381		200 –	200 – 5,000 μL: 24 deep-well plate			200 με - 3 Πε		
Throughpu	t (24- 96 samples per ru	ın)	Under 60 minu	tes		75 - 90 minutes		
Custo	mization & flexibility		customizable prot	cools	L	Locked protocols, less user input		
Cross	s-contamination risk		ver (closed-tube h	andling)	Highe	er (open-tube handling, but dedicated		
C1033	S-containination hisk	LOV	ver (closed-tube i	anunng	deo	contamination protocols available)		
Kit c	compatibility & cost		Wide range			Qiagen kits primarily		
	Footprint		Larger			Smaller		
	Validation sta	tus of assa	ays at Viracor					
Matricos	EBV/	\/7\/			12			

	valluati	UII Status UI assa	ys at viracui	
Matrices	EBV	VZV	HSV-1	SARS CoV-2
Serum	Validated	Validated	Validated	Validated
Plasma	Validated	Not Validated	Validated	Validated
Urine	Validated	Not Validated	Not Validated	Not Validated
PBMC	Not Validated	Not Validated	Not Validated	Not Validated

• Method Principle. In this study, Viracor assessed detection of Epstein-Barr virus (EBV), Varicella zoster virus (VZV), Herpes simplex virus 1 (HSV-1), and Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in urine, serum, plasma, and PBMCs. The cell rich matrix (PBMCs) was evaluated on QIAcube Connect using the QIAamp DNA Blood Mini Kit, QIAcube HT using the QIAamp 96 Virus QC HT kit, and KingFisher Flex instruments using the MagMax DNA Multi-Sample Ultra 2.0 kit. The cell free matrices (urine, serum, and plasma) were evaluated on EasyMag, QIAcube HT using the QIAamp 96 Virus QC HT kit, and KingFisher Flex instruments using the MagMAX[™] Viral/Pathogen Nucleic Acid Isolation Kit. Each of the matrices was pooled and spiked with commercially procured viral stocks independently at pre-determined concentrations spanning the dynamic range of the assay. The total nucleic concentration in ng/ μ L in PBMC sample was determined by spectrophotometry at 260 nm. Nucleic acid amplification was performed using the ABI 7500 SDS qPCR instruments in a single well format. A seven-point standard curve (5 copies/reaction to 5 x 10⁶ copies/reaction) was created using a dilution of a linearized plasmid used for quantitation.

Matrices	Virus	Base extraction platform	New extraction platform being evaluated	Performance characteristics
Serum	EBV, VZV,	NucliSENS [®] easyMAG [®]		Stock quantification,
Plasma	HSV-1, and	NucliSENS [®] easyMAG [®]	QIAcube Connect HT	Recovery, Precision,
Urine	,	NucliSENS [®] easyMAG [®]	and KingFisher [™] Flex	
PBMC	SARS-CoV-2	QIAcube Connect		DNA and RNA yield,

• Samples were spiked at three levels: High, Medium, and Low positive levels. Unspiked samples were also tested. Five replicates per level per run were set-up. Four total runs were set up. Data from the first run was used for quantifying viral stocks and assigning expected concentrations. Data from Runs 2, 3, and 4 were used for Precision and Accuracy calcs.

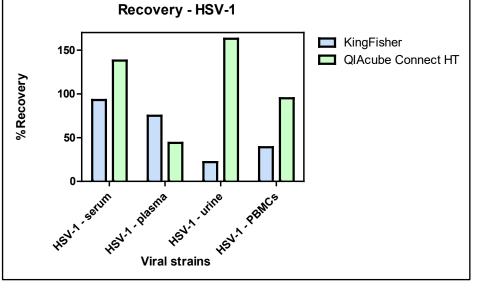

RESULTS

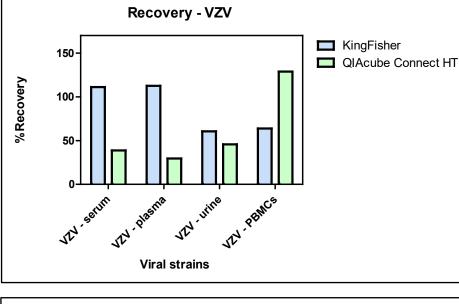
Dilution Factors

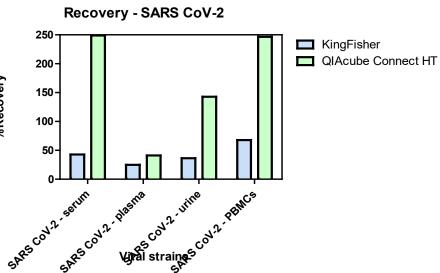
EasyMAG

At Viracor, dilution factors are commonly used to convert copies/PCR reaction to copies/mL of original specimen. Overall, QIAcube HT has higher dilution factor compared to other platforms.

EasylviAG			onnect	
Stock Quant	mL	Stock Qu	uant	r
Extraction Volume	0.50	Extraction	Volume	0.
Elution Volume	0.1	Elution Vo	olume	C
Eluate volume	0.01	Eluate vo	lume	0
DILUTION FACTOR	20	DILUTION I	ACTOR	
			R	NA \
EasyMAG		QIAcube C		(PME
Stock Quant	mL	Stock Qu		r
Extraction Volume	0.50	Extraction		0
Elution Volume	0.1	Elution Vo		0
Eluate volume	0.015	Eluate vo		0.
DILUTION FACTOR	13.33	DILUTION I	ACTOR	19
Quantification				
			QIAcu	ıbe
Virus - matrix type	EasyMAG	KingFisher	Connec	t HT
EBV - serum	9.04E+08	2.38E+08	5.91E-	+08
EBV- plasma	7.98E+08	2.83E+08	5.36E-	+08
EBV - urine	6.39E+08	2.44E+08	5.18E-	+08
EBV - PBMCs	4.83E+08	1.08E+08	4.68E-	+08
HSV-1 - serum	1.25E+10	1.17E+10	1.74E-	+10
HSV-1 - plasma	1.01E+10	7.58E+09	4.42E-	+09
HSV-1 - urine	8.46E+08	1.86E+08	1.38E-	+09_
HSV-1 - PBMCs	4.73E+09	1.84E+09	4.47E-	+09
VZV - serum	2.10E+09	2.00E+09	8.13E-	+08
VZV - plasma	1.98E+09	2.23E+09	5.87E-	+08
VZV - urine	1.08E+09	6.55E+08	4.65E-	+08
VZV - PBMCs	3.24E+08	2.07E+08	4.18E-	+08
SARS CoV-2 - serum	2.40E+07	1.03E+07	5.67E-	+07
SARS CoV-2 - plasma	5.84E+07	1.46E+07	9.14E-	+07
SARS CoV-2 - urine	5.25E+07	1.91E+07	7.49E-	+07
SARS CoV-2 - PBMCs	2.08E+07	1.41E+07	5.12E-	+07
1.0 _× 10 ⁹ 8.0 _× 10 ⁸ -	ation - EBV	🗖 Kir	syMAG ngFisher	set 1 T
	-		Acube Conne	ect HI



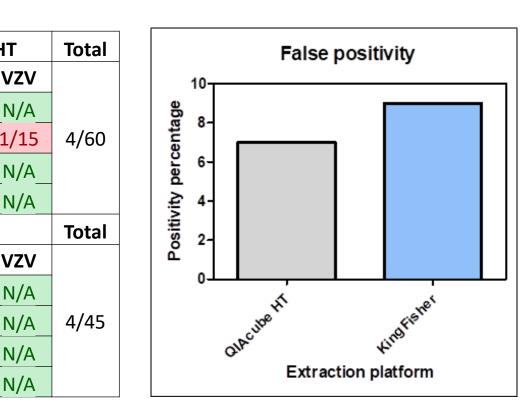

							-				
	DNA V	/irus (EBV,	HSV-1, and VZV)					Q	Acube (Connect	ΗТ
	QIAcube Connect	(PMBCs)	KingFisher		QIAcube HT	「		SARS	HSV-1	EBV	VZ
mL	Stock Quant	mL	Stock Quant	mL	Stock Quant	mL	Corun				
0.50	Extraction Volume	0.40	Extraction Volume	0.40	Extraction Volume	0.20	Serun	- · -	1/15	_N/A	_N/
0.1	Elution Volume	0.1	Elution Volume	0.1	Elution Volume	0.1	Plasm	a_N/A_	_N/A_	_N/A	1/:
0.01	Eluate volume	0.01	Eluate volume	0.01	Eluate volume	0.01	Urine	_N/A_	N/A	N/A	N/
20	DILUTION FACTOR	25	DILUTION FACTOR	25	DILUTION FACTOR	50	PBMO	N/A	1/15	1/15	N/
	R	NA Virus (SARS-CoV2)				-		King	Fisher	
	R QIAcube Connect	`	SARS-CoV2) KingFisher		QIAcube H	_		SARS			VZ
mL		`	-	mL		_	Serun	SARS	HSV-1	EBV	
mL 0.50	QIAcube Connect	(PMBCs)	KingFisher		QIAcube H1	「	Serun	N/A	HSV-1 2/15	EBV N/A	_N/
	QIAcube Connect Stock Quant	(PMBCs) mL	KingFisher Stock Quant	mL	QIAcube HT Stock Quant	mL	Plasm	N/A	HSV-1 2/15 1/15	EBV N/A N/A	N/ N/
0.50	QIAcube Connect Stock Quant Extraction Volume	(PMBCs) mL 0.35	KingFisher Stock Quant Extraction Volume	mL 0.35	QIAcube HT Stock Quant Extraction Volume	mL 0.20		N/A	HSV-1 2/15	EBV N/A	_N/
0.50 0.1	QIAcube Connect Stock Quant Extraction Volume Elution Volume	(PMBCs) mL 0.35 0.1	KingFisher Stock Quant Extraction Volume Elution Volume	mL 0.35 0.05	QIAcube HT Stock Quant Extraction Volume Elution Volume	mL 0.20 0.1	Plasm	N/A N/A N/A	HSV-1 2/15 1/15	EBV N/A N/A	N/ N/


Percent Recovery

Percent	tage Recovery	1
Virus - matrix type	KingFisher	QIAcube Connect HT
EBV - serum	26.38%	65.36%
EBV- plasma	35.48%	67.19%
EBV - urine	38.19%	81.16%
EBV - PBMCs	22.32%	96.98%
HSV-1 - serum	93.18%	138.46%
HSV-1 - plasma	74.96%	43.72%
HSV-1 - urine	22.05%	162.93%
HSV-1 - PBMCs	38.93%	94.55%
VZV - serum	111.17%	38.73%
VZV - plasma	112.55%	29.60%
VZV - urine	60.53%	45.64%
VZV - PBMCs	63.75%	128.78%
SARS CoV-2 - serum	42.85%	248.89%
SARS CoV-2 - plasma	24.99%	41.05%
SARS CoV-2 - urine	36.31%	142.72%
SARS CoV-2 - PBMCs	67.82%	246.60%

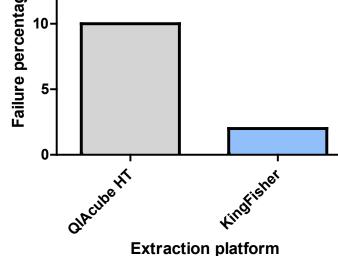
Precision

				Serum Pr	recision (<	30% Intra-	Assay, <40%	Inter-Assa	y)			
		EasyMag		KingFisher				Qiacube HT				
		Run 1	Run 1	Run 2	Run 3	Run 4	InterAssay	Run 1	Run 2	Run 3	Run 4	InterAssay
	High	11%	13%		5%	4%	26%	9%	7%	15%		11%
EBV	Med	8%	5%		7%	6%	26%	13%	7%	4%		16%
	Low	8%	10%		14%	9%	26%	29%	21%	11%		21%
	High	9%	16%	7%	2%		15%	21%	6%	26%		18%
HSV-1	Med	7%	10%	10%	8%		49%	6%	19%	8%		17%
	Low	12%	78%	17%	12%		59%	11%	33%	15%		27%
	High	16%	13%	14%	9%		26%	22%	25%	66%		45%
VZV	Med	31%	34%	29%	30%		32%	31%	36%	15%		36%
	Low	39%	17%	66%	15%		85%	40%	69%	79%		67%
	High	7%	31%	4%	6%		31%	24%	16%	53%		44%
SARS-CoV2	Med	5%	12%	24%	16%		34%	13%	28%	31%		22%
	Low	15%	21%	27%	4%		26%	44%	18%	14%		29%


				Plasma	Precision	(<30% Intr	a-Assay, <40%	% Inter-Ass	ay)			
		EasyMag			KingFisher					Qiacube HT		
		Run 1	Run 1	Run 2	Run 3	Run 4	InterAssay	Run 1	Run 2	Run 3	Run 4	InterAssay
	High	10%	8%		24%	4%	33%	17%	14%	12%		14%
EBV	Med	11%	9%		14%	4%	39%	18%	20%	10%		16%
	Low	13%	6%		19%	8%	41%	12%	10%	11%		14%
	High	25%	2%	6%	14%		15%	22%	20%	10%		18%
HSV-1	Med	9%	8%	12%	7%		25%	14%	12%	2%		16%
	Low	11%	7%	6%	6%		29%	19%	6%	11%		18%
	High	6%	7%	13%	10%		20%	26%	13%	40%		42%
VZV	Med	26%	60%	23%	15%		36%	31%	28%	34%	1	40%
	Low	43%	96%	55%	56%		64%	24%	22%	25%		50%
	High	9%	6%	16%	13%		29%	23%	6%	16%	1	15%
SARS-	Med	12%	13%	15%	25%		26%	6%	15%	40%		24%
CoV2	Low	11%	28%	16%	26%		24%	25%	24%	24%		25%
		· · ·		Note: Extr	action issue	es in Qiacuk	be HT for SAR	S-CoV2 in P	lasma			

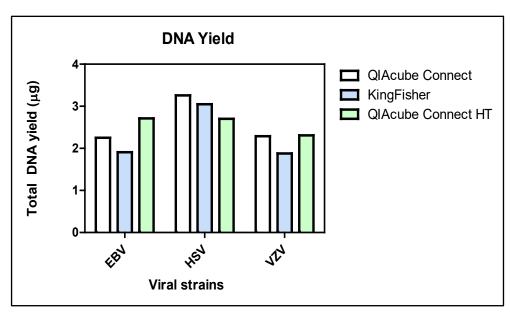
				Urine	Precision (<40% Intra	I-Assay, <50%	Inter-Assa	ay)			
		EasyMag			KingFisher			Qiacube HT				
		Run 1	Run 1	Run 2	Run 3	Run 4	InterAssay	Run 1	Run 2	Run 3	Run 4	InterAssay
	High	16%	12%	N/A	8%	6%	62%	8%	12%	14%		54%
EBV	Med	8%	26%	N/A	14%	6%	59%	32%	22%	18%		57%
	Low	18%	27%	N/A	13%	5%	59%	27%	32%	19%		75%
	High	12%	6%	9%	25%	N/A	87%	52%	13%	11%		61%
HSV-1	Med	12%	18%	22%	17%	N/A	52%	7%	13%	14%		90%
	Low	46%	49%	56%	40%	N/A	48%	28%	12%	14%		82%
	High	9%	17%	8%	8%	N/A	58%	15%	16%	9%		35%
VZV	Med	6%	22%	30%	15%	N/A	74%	40%	10%	23%		42%
	Low	7%	15%	14%	27%	N/A	60%	47%	28%	22%		43%
6 A D 6	High	3%	8%	8%	3%	N/A	16%	5%	10%	13%		29%
SARS-	Med	12%	10%	11%	7%	N/A	17%	20%	18%	3%		18%
CoV2	Low	22%	12%	32%	12%	N/A	28%	18%	11%	3%		21%

				PMBC	Copies/mL	(<40% Inti	ra-Assay, <50%	% Inter-Ass	ay)			
		Qiacube Connect			KingFisher			Qiacube HT				
		Run 1	Run 1	Run 2	Run 3	Run 4	InterAssay	Run 1	Run 2	Run 3	Run 4	InterAssay
	High	4%	10%		9%	14%	39%	14%	15%	12%	19%	46%
EBV	Med	23%	8%		13%	6%	45%	9%	17%	18%	29%	59%
	Low	8%	12%		16%	8%	41%	22%	16%	14%	14%	40%
	High	14%	10%	14%	32%		42%	8%	7%	4%		23%
HSV-1	Med	9%	14%	46%	19%		34%	2%	5%	8%		16%
	Low	14%	22%	26%	33%		39%	10%	8%	8%		17%
	High	10%	13%	16%	15%		15%	7%	19%	44%		26%
VZV	Med	10%	26%	27%	31%		31%	18%	23%	41%		29%
	Low	36%	48%	34%	61%		73%	16%	29%	22%		24%
CADC	High	27%	4%	32%	32%	10%	83%	31%	9%		5%	21%
SARS-	Med	16%	16%	49%	8%	24%	61%	23%	8%		12%	23%
CoV2	Low	24%	25%	53%	9%	52%	36%	32%	43%	34%	36%	40%


False Positivity / Contamination Rate

eurofins

Extraction failure rate


Extraction Failure Rate

		Se	erum Ac	curacy							
		Easy	Mag	KingF	isher	Qiacube HT					
EBV	Pos	15/15	100%	45/45	100%	44/44	100%				
EDV	Neg	5/5	100%	15/15	100%	15/15	100%				
HSV-1	Pos	15/15	100%	45/45	100%	43/43	100%				
U2A-T	Neg	5/5	100%	13/15	87%	12/13	92%				
	Pos	15/15	100%	42/42	100%	41/43	95%				
VZV	Neg	5/5	100%	15/15	100%	15/15	100%				
	Pos	15/15	100%	39/39	100%	37/37	100%				
SARS	Neg	5/5	100%	14/14	100%	13/13	100%				
		U	rine Ac	curacy							
	EasyMag KingFisher Qiacube HT										
	Pos	15/15	100%	37/45	82%	42/45	93%				

	Urine Accuracy										
		Easy	Mag	KingF	isher	Qiacube HT					
	Pos	15/15	100%	37/45	82%	42/45	93%				
EBV	Neg	5/5	100%	15/15	100%	15/15	100%				
	Pos	5/15	33%	12/45	27%	33/45	73%				
HSV-1	Neg	5/5	100%	15/15	100%	15/15	100%				
	Pos	15/15	100%	45/45	100%	44/44	100%				
VZV	Neg	5/5	100%	15/15	100%	15/15	100%				
	Pos	15/15	100%	44/44	100%	36/37	97%				
SARS	Neg	5/5	100%	15/15	100%	14/14	100%				

DNA Yield

Conclusions

Parameters	King-Fisher vs QIAcube HT				
	QIA-HT outperformed KF in				
	recovery, achieving				
%-Recovery/Analytical	remarkably high yields . This				
sensitivity	translates to potentially				
Sensitivity	higher analytical sensitivity,				
	impacting the assay's LOD and				
	LLOQ.				
Accuracy	Similar performance				
	QIA-HT exhibited				
Precision	better precision overall,				
Precision	particularly in Inter-assay				
	tests.				
	No significant differences in				
DNA Yield and Purity	DNA yields				
	HT has significantly higher				
RNA Yield	RNA yields				
Negatives with Positive Ct					
Values	Similar performance				
Comple Future tion Failures	HT has high extraction failure				
Sample Extraction Failures	(KIT Specific-?)				

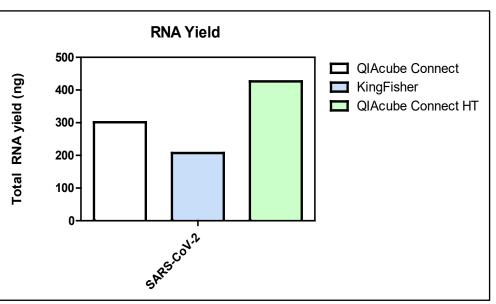
Comparable

Cost/reaction

REFERENCES

- Rev.2006Jul;19(3):595

- Washington, D.C.
- Bioinformatics 2006, 7:123.


Clinical Trial Solutions

Accuracy = $Log_{10}Expected - Log_{10}Observed (\leq 0.70)$ and > 90% Pos, 100% Neg

Plasma Accuracy							
		EasyMag		KingFisher		Qiacube HT	
EBV	Pos	15/15	100%	45/45	100%	45/45	100%
	Neg	5/5	100%	15/15	100%	15/15	100%
HSV-1	Pos	15/15	100%	44/44	100%	43/43	100%
	Neg	5/5	100%	14/15	93%	14/14	100%
VZV	Pos	15/15	100%	44/44	100%	45/45	100%
	Neg	5/5	100%	15/15	100%	14/15	93%
SARS	Pos	15/15	100%	43/43	100%	31/31	100%
	Neg	5/5	100%	15/15	100%	11/11	100%

PBMC Accuracy							
		Qiacube		KingFisher		Qiacube HT	
	Pos	15/15	100%	45/45	100%	59/59	100%
EBV	Neg	4/4	100%	15/15	100%	19/20	95%
HSV-1	Pos	14/14	100%	45/45	100%	45/45	100%
	Neg	5/5	100%	15/15	100%	14/15	93%
	Pos	14/14	100%	43/43	100%	45/45	100%
VZV	Neg	5/5	100%	15/15	100%	15/15	100%
SARS	Pos	15/15	100%	43/49	88%	48/48	100%
	Neg	5/5	100%	20/20	100%	19/19	100%

RNA Yield

Matrices	EBV	HSV-1	vzv	SARS CoV2	Recommended Platform
	1-EM	1-EM		1-EM	
Serum	2-HT	2-HT	EM	2-KF	EasyMag
	3-KF				
	1-EM	1-EM	EM	1-EM	
Plasma	2-HT	2-HT		2-KF	EasyMag
		3-KF			
Urine	EM ?	EM	1-EM		
			2-HT	EasyMag	
				3-KF	
PBMC	HT	HT	HT	QC	QIAcube-HT

 EasyMAG outperformed QIAcube Connect HT and KingFisher for serum, plasma, and urine.

QIAcube HT outperformed QIAcube for PBMCs

• In agreement with historical results, HSV-1 and VZV viral stocks generated anomalous results

Alternative extraction methods may be necessary for extracting neat urine samples.

• Burns MJ, Nixon GJ, Foy CA, Harris N. Standardization of data from real-time quantitative PCR methods – evaluation of outliers and comparison of calibration curves. BMC Biotechnology. 2005 Dec 7; 5:31.

Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JD, Wengenack NL, Rosenblatt JE, Cockerill FR 3rd, Smith TF. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006 Jan; 19(1): 165-256. Review. Erratum in: Clin Microbiol

MM03, 3rd Edition. Molecular Diagnostics Methods for Infectious Diseases; Approved Guideline. Clinical and Laboratory Standards Institute. Wayne, PA. February 2015.

• MM06-A2, Vol. 30 No.22. Quantitative Molecular Diagnostics Methods for Infectious Diseases; Approved Guideline, Second Edition, Clinical and Laboratory Standards Institute. Wayne, PA. November 2010.

 Molecular Microbiology: Diagnostic Principles and Practice, Second Edition. David H. Persing. ASM Press. 2011.

 Motulsky HM and Brown RE. Detecting outliers when fitting data with nonlinear regression-a new method based on robust nonlinear regression and the false discovery rate. BMC

