A Process for Instrument Performance Qualification Aligned with the CLSI H62 Guideline Using Beads with NIST Assigned ERF Values

Susmita Jasti¹, Jordyn Westergaard¹, Courtney Stoker¹, Thomas Beadnell¹, Virginia Litwin²

¹Eurofins Viracor BioPharma, Lenexa, Kansas, USA ²Eurofins Clinical Trial Solutions, Montréal, Québec, Canada

Contact information: Susmita.Jasti@vbp.eurofinsus.com

Clinical Trial Solutions

ABSTRACT

- It is essential that all flow cytometers are fully qualified and monitored to ensure that the output generated is reproducible and precise.
- When flow cytometric assays are incorporated into global clinical trials the instrument qualification and monitoring must also include

RESULTS

Establishing Optimal Voltage Settings

Optimal voltages were established using two approaches- 1) Voltage titration and Becton Dickinson's (BD[®]) equalizer tool (see Poster # 306); 2) Separation index (SI) was calculated from Voltage titration experiments in which the unstained peripheral blood mononuclear cells (PBMC) and BD[®] CS&T beads were used.

BD[®]'s equalizer tool was used to adjust voltages for each detector so that the robust standard deviation (rSD) of PBMC was approximately 3X the electronic noise (SDen) derived from the Baseline Report. Optimal voltages were then saved as "Application Settings."

cross-standardization.

• This poster describes an approach for instrument performance qualification (PQ) and cross-standardization of two BD® FACSymphony™A5, Spectrally Enabled, 5-laser (349nm, 405 nm, 488 nm, 561 nm, and 637 nm), 48-color flow cytometers.

Laser Line	Detector	Channel	Mirror (LP)	Filter (BP)	Parameter
UV (349 nm)	A B C D E F G H I J	40 39 38 37 36 35 34 33 32 31	765 704 675 645 595 570 535 495 425 365	809/82 736/64 695/40 660/30 610/30 585/30 540/20 515/60 446.5/67 379/34	UV809 UV736 UV695 UV660 UV610 UV585 UV540 UV515 UV446 UV379
Violet (405 nm)	A B C D E F G H I J K L M N	28 27 26 25 24 23 22 21 20 19 18 17 30 29	810 765 730 690 665 645 605 585 570 530 495 465 430 415	845/70 785/50 750/40 710/40 680/30 660/30 615/25 595/30 576/20 540/20 540/20 510/40 470/15 450/40 427/25	V845 V785 V750 V710 V680 V660 V615 V595 V576 V576 V540 V510 V510 V470 V450 V427
Blue (488-nm)	A B C D E F G H I J	10 9 8 7 6 5 4 3 2 1	770 724 685 665 645 585 570 520 500	810/79 750/60 710/50 675/20 660/30 602/40 576/20 537/32 510/20 488/10	B810 B750 B710 B675 B660 B602 B576 B537 B510 SSC
Yellow-Gree (561 nm)	A B C D E F G H I	49 48 47 46 45 44 43 42 41	800 LP 750 LP 735 LP 699 LP 680 LP 665 LP 645 LP 595 LP 570 LP	825.5/49 BP 780/60 BP 750/40 BP 730/50 BP 695/40 BP 670/20 BP 660/30 BP 602/40 BP 585/30 BP	YG825 YG780 YG750 YG730 YG695 YG670 YG660 YG602 YG585
Red (637 nm)	A B C D E F	16 15 14 13 12 11	750 LP 720 LP 699 LP 680 LP 665 LP 645 LP	780/60 BP 730/50 BP 710/25 BP 680/30 BP 675/20 BP 660/30 BP	R780 R730 R710 R680 R675 R660

• Voltage titration results in one detector across each laser line.

Linearity Assessment

ERF Approach

- SRQP were acquired at optimal voltages.
- Linearity was confirmed in the detectors where all 4 peaks were on scale. For the remaining detectors, Ratiometric approach was used to confirm linearity.

Bead Population	MdFI	rSD	%rCV	ERF	Bead Population	MdFI	rSD	%rCV	ERF	Bead Population	MdFI	rSD	%rCV	ERF	Bead Population	MdFI	rSD	%rCV	ERF	Bead Population	MdFI	rSD	%rCV	ERF
Peak 1	72	32	44	N/A	Peak 1	179	53	30	N/A	Peak 1	27	25	91	N/A	Peak 1	11	48	452	N/A	Peak 1	188	56	30	N/A
Peak 2	496	40	8	281708	Peak 2	1196	74	6	75746	Peak 2	2463	81	3	19244	Peak 2	3098	182	6	75574	Peak 2	3938	274	7	6581
Peak 3	5328	203	4	4324709	Peak 3	9926	254	3	483589	Peak 3	24405	506	2	214567	Peak 3	35040	893	3	845442	Peak 3	44444	1176	3	72418
Peak 4	117098	1918	2	89408032	Peak 4	75918	2847	4	3553180	Peak 4	189545	4744	3	1444134	Peak 4	216145	5872	3	6828432	Peak 4	87228	3428	4	271813

- Instrument qualification (IQ) and operational qualification (OQ) were performed by the vendor field service engineer to verify that the instruments were installed appropriately and performing as intended.
- For the instrument PQ, detector linearity, dynamic range, detector efficiency (Qr), electronic noise (SDen) and background signal (Br) were evaluated for each fluorescence detection channel as described in **CLSI H62**.
- Optimal voltages were established using two approaches- Voltage titration and BD[®]'s equalizer tool.
- Spherotech Supra Rainbow Quantitative Particles (SRQP) with National Institute of Standards and Technology (NIST) assigned Equivalent Reference Fluorophores (ERF) values were used to determine Linearity and Dynamic Range.
- Detector Linearity assessment methods- Ratiometric and ERF.
- Qr (Detector efficiency) and Br (Background) were obtained from the Cytometer Setup and Tracking (CS&T) Baseline Reports.
- Carryover was evaluated using Streck CD-Chex CD4 Low and CD-Chex Plus Normal quality control (QC) samples.

Ratiometric Approach

Representative graphs from one detector across each laser line from one instrument are shown.

• MdFI ratios of the 2 brightest beads are plotted as a function of the PMT voltage to determine the linear range. Representative graphs from one detector across each laser. • % Difference was calculated between MFI ratios and the mean MFI ratio. Graphs illustrate deviations from linearity across the detector's entire dynamic range.

Detector Efficiency and Background											Carryover					Instrument Comparison with ERF Values										
Paramete	r Qr	Br	Paramete	r Qr	Br	Paramete	r Qr	Br	Parameter	Qr	Br Par	rameter	Qr Br	BD [®] FACS Symphon	^{ıy} % Carryove	Manufacturer's	Mean %CV	Mean Inter- instrument	Parameter	Bead Population	Instrument 1 Calculated ERF	Instrument 2 Calculated ERF	Mean	St. Dev	%CV	% Bias
UV379	2.581	3 935	V427	0.3177	387	B510	0.262	222	YG585	0.2942	79	R660	0.14 15			Specifications		% CV		1	404,463	402,717	403,590	1,235	0.31	-0.43
UV446	1.737	9 473	V450	0.4041	322	B537	0.9317	260	YG602	0.5414	82	R675	0.1024 0	Instrument 1	-1.58%	<0.75%	2.4		UV585	2	8,557,424	8,616,002	8,586,713	41,421	0.48	0.68
UV515	0.313	8 2177	V470	0.3534	423	B576	0.2479	538	YG660	0.1622	0	R680	0.1393 7	Instrument 2		<0.750/	17	2.2		3	562,393,116	560,991,553	561,692,335	991,054	0.18	-0.25
UV540	0.089	6 2622	V510	0.6823	66	B602	0.6791	433	YG670	0.0941	114	R710	0.1895 0		0.05%	<0.75%	1.7			1	52,557	52,604	52,580	33	0.06	0.09
UV585	0.04	2021	V540	0.55	84	B660	0.1916	55	YG695	0.1011	600	R730	0.159 0		Alowand	Normal cample	a wara stair	and with CD2	V510	2	452,387	451,568	451,978	579	0.13	-0.18
UV610	0.035	1 1644	V576	0.1954	288	B675	0.1483	42	YG730	0.1639	0	R780	0.1863 0			Normai Sampie	es were stall	ieu with CDS,		3	3,779,325	3,782,792	3,781,059	2,452	0.06	0.09
UV660	0.025	7 574	V595	0.2635	310	B710	0.1805	24	YG750	0.1482	0			CD4 and CD4	45, Lyse/wa	isn				1	248,239	248,696	248,467	323	0.13	0.18
UV695	0.022	2 588	V615	0.1633	362	B750	0.1803	0	YG780	0.2056	0			• Normal QC v	vere acquir	ed in triplicate	e followed b	y three	B576	2	2,877,852	2,866,104	2,871,978	8,307	0.29	-0.41
UV736	0.069	3 157	V660	0.1047	243	B810	0.1596	0	YG825	0.1612	0			replicates of	CD4 low.					3	26,407,272	26,466,790	26,437,031	42,085	0.16	0.23
UV809	0.041	6 96	V680	0.0813	158															1	107,034	107,093	107,063	41	0.04	0.05
			V710	0.1105	0									Campo	0/ -	- [(D1 D2) /	(A2 D2)1	~ 100	YG695	2	1,418,393	1,416,578	1,417,485	1,284	0.09	-0.13
			V750	0.1152	0									Carry	over 70 -	- [(D 1 -D 3)/	(AJ-DJ)]	X 100		3	13,147,956	13,157,624	13,152,790	6,836	0.05	0.07
			V785	0.1057	0														D790	1	120,000	120,000	120,000	0	0.00	0.00
			V845	0.1096	0									A3 = Normal	replicate 3; I	B1 = Low replica	ite 1, $B3 = Lov$	w replicate 3.	K/OU	2	1,471,628	1,471,628	1,471,628	0	0.00	0.00
																							un onto and C			aulatad

Qr and Br values provided information on instrument sensitivity.

• Values from one instrument are shown

SRQP were acquired at optimal voltages on two instruments and ERF Values were calculated

• One detector from each laser line is shown as an example.

• Note-Instrument cross-calibration is ongoing.

REFERENCES

- 1. CLSI. Validation of Assays Performed by Flow Cytometry. CLSI document H62. 1st Edition Wayne PA (Ed.). Clinical Laboratory Standards Institute (2021).
- 2. Hoffman, Robert A., et al. NIST/ISAC standardization study: Variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads. Cytometry Part A 81.9 (2012): 785-796.
- 3. Perfetto, Stephen P., et al. Q and B values are critical measurements required for inter-instrument standardization and development of multicolor flow cytometry staining panels. Cytometry Part A 85.12 (2014): 1037-1048.

ACKNOWLEDGEMENTS

We thank the following individuals for insightful discussions:

- Lili Wang- NIST
- Brian Shah- Spherotech
- Anthony Steichen, Ludovic Monheim, and Aaron Tyznik- BD Biosciences

